
Defense Nuclear Agency
Alexandria, VA 22310-3398

DNA-TR-94-64

Microcomputer Visualization of
Nuclear Cloud Models

Ernest T. Wright
Virtual Image Labs Inc
1738 Elton Road #307
Silver Spring, MD 20903

i\ A

innn^

December 1994

Technical Report

CONTRACT No. DNA 001-92-C-0173

Approved for public release;
distribution is unlimited.

19941129 097

Destroy this report when it is no longer needed. Do not
return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY,
ATTN: CSTI, 6801 TELEGRAPH ROAD, ALEXANDRIA, VA
22310-3398, IF YOUR ADDRESS IS INCORRECT, IF YOU
WISH IT DELETED FROM THE DISTRIBUTION LIST, OR
IFTHE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR
ORGANIZATION.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of Information Is estimated to average 1 hour per response Including the time for reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this
collection of Information, Including suggestions for reducing this burden, tc Washington Headquarters Services Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Ariington, VA 22202-4302, and to the Office c . nagement and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

941201
3. REPORT TYPE AND DATES COVERED

Technical 921001 - 940331
4. TITLE AND SUBTITLE

Microcomputer Visualization of Nuclear Cloud Models

5. FUNDING NUMBERS

C -DNA 001-92-C-0173
PE -62715H
PR -AC
TA -CE
WU-DH328130

6. AUTHOR(S)

Ernest T. Wright

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Virtual Image Labs Inc
1738 Elton Road #307
Silver Spring, MD 20903

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Nuclear Agency
6801 Telegraph Road
Alexandria, VA 22310-3398
SPWE/Byers

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

DNA-TR-94-64

11. SUPPLEMENTARY NOTES

This work was sponsored by the Defense Nuclear Agency under RDT&E RMC Code B4662D AC CE 00008
7010AAC25904D.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes ICCanvas, a computer program which creates and displays isosurfaces on 3D scalar fields.
ICCanvas runs under Microsoft Windows 3.1 on computers with 4 MB or more of RAM. Its three program files
total less than 150 KB, and its fully documented custom file format for scalar fields is highly compressed. The
ICCanvas distribution disk includes C language source code for creating IC format data files.

ICCanvas was developed for personal computer visualization of 3D density data created by the TASS and DICE-
MAZ nuclear cloud hydrodynamic codes. Its scalar field data model is sufficiently general that it may also be
used to view the results of 3D medical imaging (e.g., CT and MRI), geological surveys, or the tabulated values of
almost any function of three variables.

ICCanvas gives users interactive control over the orientation of the view and the choice between wireframe, fac-
eted and Gouraud-shaded rendering. The program's display can be saved in Windows BMP, PC Paintbrush PCX,
and Macintosh PICT formats, and the geometry of the surfaces it creates can be saved as AutoCAD DXF and Wa-
vefront OBJ files. The program includes extensive on-line help.

14. SUBJECT TERMS
Windows 3D
Nuclear Cloud Scalar Field
Nuclear Weapons Effects Visualization

15. NUMBER OF PAGES

42
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-280-5500
Standard Form 298 (Rev.2-89)
Prescribed by ANSI Sta. 239-18
298-102

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE

CLASSIFIED BY:

N/A since Unclassified.

DECLASSIFY ON:

N/A since Unclassified.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

TABLE OF CONTENTS

Section Page

FIGURES iv

1 INTRODUCTION 1

1.1 BACKGROUND 1

1.2 REPORT OBJECTIVES 2

2 ALGORITHMS 3

2.1 SURFACE CONSTRUCTION 3
2.1.1 Finding Vertices 3
2.1.2 Finding Faces 4
2.1.3 Surface Compaction 4
2.1.4 Completing the Surface Definition 5

2.2 THE VIEWING TRANSFORMATION 6

2.3 RENDERING AND SCAN CONVERSION 9
2.3.1 Hidden Surface Removal 9
2.3.2 Lighting and Shading 10

3 RESULTS 11

3.1 AN INTERACTIVE PC-BASED PROGRAM 11

3.2 DATA COMPRESSION AND THE IC FILE FORMAT 13
3.2.1 Text vs. Binary 14
3.2.2 Run-Length Encoding 14
3.2.3 A 16-Bit Real Number Format 16
3.2.4 Other Compression Methods 17
3.2.5 The IC File Format 17

3.3 ADVANCED MICROCOMPUTER VISUALIZATION 19

4 REFERENCES 23

APPENDIX —THE CUBE CASES A-1

ui

FIGURES

Figure Page

2-1 Elements of the viewing system 8

2-2 A tessellated sphere rendered by three different methods 8

3-1 Elements of the ICCanvas user interface 12

3-2 Example source code for the creation of an Intel/IEEE 4-byte float 15

3-3 One frame from a cloud growth animation 21

A-1 The cube cases A-1

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By..
Distribution /

□

Availability Codes

Avail and/or
Special

IV

SECTION 1
INTRODUCTION

Given for one instant an intelligence which could comprehend all the forces
by which nature is animated and the respective positions of the beings
which compose it, if moreover this intelligence were vast enough to submit
these data to analysis, it would embrace in the same formula both the
movements of the largest bodies in the universe and those of the lightest
atom; to it nothing would be uncertain, and the future as the past would be
present to its eyes.

—Pierre Simon de Laplace
Analytic Theory of Probabilities, 1820

Modern physical theory no longer permits us, even in principle, to be so sanguine about
the certainty of the future, but we continue to rely on numerical models of events that
have not yet happened, models built on what Laplace called a calculus of common sense,
to allay our ignorance. Computers have lately acquired the power to animate these
models at a level of detail that threatens to exceed our finite comprehension only slightly
less than does the real world. Fortunately, France also gave us Descartes.

1.1 BACKGROUND.

The Defense Nuclear Agency has sponsored the compilation of a library of computer-
generated nuclear clouds that allows military planners to accurately characterize the
atmospheric environment near the site of a nuclear burst. The library comprises two- and
three-dimensional arrays of densities, along with related flow field and temperature data,
calculated for different weapon yields, heights of burst, times after burst, and particle types
and sizes. Both the library itself and the hydrodynamic codes that produced it reside on a
Cray supercomputer at the Los Alamos National Laboratory.

Visualization, the creation of images from numerical data, is an important part of the
research and analysis that both inform and follow from the calculation of nuclear cloud
dynamics. But to visualize data as prolific as the 3D arrays of density values developed by
the hydrocodes, the only option has been the use of high-end computers running expensive
data analysis software—Stardent's Advanced Visualization System (AVS) is an example.
Most people with a valid interest in using the library don't have ready access to such
systems.

This report describes a computer program called ICCanvas ("Isosurface Constructor
Canvas"), an interactive 3D visualization tool that runs in the Microsoft Windows
environment. ICCanvas allows personal computer users to view level surfaces on
structured 3D data. Typical sources of data include the outputs of 3D TASS and DICE-
MAZ, but the program's data model is sufficiently general that it may also be used to

fiJ-f-ZXGl-

visualize data from 3D medical imaging (e.g., CT and MRI), geological surveys, or the
tabulated values of almost any function of three variables.

ICCanvas supports a custom file format for 3D data arrays that can cut the size of a cloud
file by two orders of magnitude or more. The program can also export the images and
surfaces it creates, a handoff capability that can link the cloud library to off-the-shelf CAD
and 3D rendering applications.

1.2 REPORT OBJECTIVES.

This report is a conceptual description of the algorithms employed by ICCanvas and of
some of the ways the program can be used. Section 2 discusses in some detail the
approach to surface construction at the heart of the program, along with the viewing
transformations and rendering methods used to create surface images. Section 3 includes
a tour of the program from the user's point of view and an introduction to the use of other
3D rendering applications with ICCanvas, but the bulk of this section is devoted to
documenting the IC file format. The Appendix contains an enumeration of each of the
256 entries in the cube case array explained in 2.1.2. The triangles for each cube were
produced by actually submitting the cube to ICCanvas as a (very small) density array and
then rendering the output. This output serves as a straightforward, albeit tedious,
verification of the code.

Many aspects of our work on ICCanvas, while accounting for a substantial amount of the
time spent on the program's development, are not treated at length in this report, primarily
because they can't be discussed at a level of generality that's accessible (or of interest) to
most readers. These include the mechanics of writing a Windows application, strategies
for handling large amounts of data in a 16-bit environment, the subtleties of creating
native-format image and geometry files, and the broad field of 3D rendering. The
interested reader will find this information in a number of readily available sources.

SECTION 2
ALGORITHMS

2.1 SURFACE CONSTRUCTION.

A scalar field is a 3D array of values of a function f(x,y,z) tabulated at regular intervals
of x, v and z. In IC, the scalar field values usually represent densities, but they may be the
values of other functions of three variables—temperature, field strength, or probability, for
example. IC imbeds the scalar field in a regular grid consisting of edges that join
neighboring scalar field values. It then constructs a triangle mesh approximation of a level
surface or isosurface on the scalar field. A level surface consists of all points (x, y,z) for
which /(x, v,z) = c for a constant c, called the level.

The triangle mesh approximation, called simply the surface in what follows, is represented
by an array VERT [] of vertex coordinates and an array FACE [] of triangles. Each
triangle in FACE [] is defined by three indexes into the VERT [] array, and each vertex is
defined by three space coordinates. The final sizes of the VERT [] and FACE [] arrays are
unknown until surface construction is complete, so vertex and face information is written
to temporary files, which are read back in and deleted when the build is finished.

The surface finding approach described in 2.1.1 and 2.1.2 most closely resembles
Marching Cubes, a method described by Lorensen and Cline (1987). Similar methods
have been developed by Wyvill et al. (1986) and Bloomenthal (1988). See Hall (1990) for
a summary of all three methods. Additional remarks on Marching Cubes can be found in
Durst (1988), Wilhelms and Van Gelder (1990) and Foley et al. (1990).

2.1.1 Finding Vertices.

The routine icFindVertices () finds surface vertices on grid edges for which

(f [n] > level) XOR (f[n+l] > level) = TRUE (2.1)

where [n] is an array index [i, j, k] into the scalar field f, [n+l] represents one of
[i+1 ,j,k], [i, j +1,k], [i,j,k+1], and XOR is the logical exclusive-or operator.
This is just a formal way of saying that a surface vertex is found on every grid edge whose
endpoints have values on opposite sides of the level.

For each edge satisfying Eq. (2.1), two of the three coordinates of the surface vertex are
fixed by the position of the edge, and the third is found by linear interpolation:

ufrac = 1 + 254 * (f[n+l] - level)/(f [n+l] - f[n]) (2.2)

where u is a coordinate in the array index coordinate system. (Array index coordinates
are 16-bit fixed-point numbers whose integer part is n and whose fractional part is a
fraction of the distance from f [n] to f [n+l].) Internally, the scalar field and level are

expressed as logarithms (see 3.2.3), so that the interpolation is actually linear in log space.
Note too that the calculation is performed using integer arithmetic, and that the constants
in Eq. (2.2) prevent the surface vertex from lying exactly at the position of a scalar field
value.

The coordinates of each surface vertex are written to the vertex temporary file as they are
found, and an ordinal for the vertex is associated with the grid edge so that it can later be
retrieved by the surface triangle routine icFindFaces () described in 2.1.2.

2.1.2 Finding Faces.

The routine icFindFaces () finds surface triangles by sequentially examining cubes in
the grid. A cube consists of eight scalar field values, one at each corner, connected by
twelve grid edges. The relationship of the corner values to the level is written into a single
8-bit integer, called a cube case number, by

cube[n] = = (in[i,j,k] LSHIFT 0)
+ (in[i+l,j,k] LSHIFT 1)
+ (in[i+l,j+l,k] LSHIFT 2)
+ (in[i, j+l,k] LSHIFT 3)
+ (in[i,j,k+l] LSHIFT 4)
+ (in[i+l,j,k+l] LSHIFT 5)
+ (in[i+l,j+l,k+l] LSHIFT 6)
+ (in[i,j+l,k+l] LSHIFT 7) (2.3)

where in [n] = 1 when f [n] > level and 0 otherwise, and LSHIFT is the bitwise left
shift operator. The numbering of cube corners implied by Eq. (2.3), in which the binary
state in[n] for each cube corner is mapped onto one of the eight bits of the number
cubefn], is illustrated in the Key to the cube case array (Figure A-l) given in the
appendix. Note that there are 256 cubes because there are 28 = 256 possible values for
cube[n].

cube [n] forms an index in the range [0, 255] into an array vcase [] containing triangle
descriptions for each variety of cube. Each triangle in vcase [] is defined in terms of the
cube edges, numbered from 0 to 11, on which each of its three vertices lie. For the cube
at n, each of the cube edges in vcase [cube [n]] corresponds to a grid edge with
endpoints f [n], f [n+1] that satisfy Eq. (2.1). Recall from 2.1.1 that vertex ordinals
have already been associated with these edges. Each surface triangle may therefore be
defined by three vertex ordinals collected from the appropriate grid edges. The vertex
ordinals for each surface triangle are written to the face temporary file.

2.1.3 Surface Compaction.

Surfaces built as described in 2.1.1 and 2.1.2 tend to contain a significant number of small
triangles that burden the graphics routines without contributing much to the shape of the
surface. Some of these triangles may be long, thin slivers that are ill-conditioned or nearly

degenerate for some rendering algorithms. IC implements a solution called Compact
Cubes described by Moore and Warren (1991, 1992).

In the pseudocode that follows, a gridpoint g is just the position of a scalar field value. A
surface vertex is called a satellite of g if it is closer to g than to any other gridpoint.

for each surface triangle T
if the vertices of Tare satellites of different gridpoints

then produce a new triangle connecting the gridpoints
else T collapses to a vertex or an edge, so ignore it

end for
for each gridpoint g of the new triangle mesh

displace g to the average position of its satellites
end for

The initial use of array index coordinates to define vertices (see 2.1.1) reduces the task of
determining satellite relationships to a trivial rounding of the coordinates and simplifies the
production of new triangles.

2.1.4 Completing the Surface Definition.

Once all of the vertices and faces have been defined, they are read back in from the
temporary files, which are destroyed. Vertex coordinates are scaled so that the space of
the scalar field just fits inside a unit cube. The conversion from array index coordinates to
a floating-point system with values in [0, 1] (in the context of viewing discussed in 2.2, the
world coordinate system) simplifies the graphics routines while restoring the aspect of the
surface—the sampling intervals along each of x, y and z for the scalar field are uniform,
but in general they are not the same for different axes.

A normal for each face is calculated as a cross product of two vectors lying along edges of
the face. For vectors p and q defined as

p = (x2-x„ y2-yi3 z2-zx)^

q=(*i-*3> yx-yit *,-*3)

where the x, y and z are coordinates of the three face vertices, the normal n is the cross
product p x q normalized to unit length. Note that two directions for n, symmetric with
respect to sign, are possible, and that the choice can depend on the order in which the
vertices are listed. All of the triangles listed in the vcase [] array therefore specify
vertices in clockwise order as seen from outside the surface, so that pxq points outward.
When a single winding order has been adopted in this way for all vertices, the polygons
are sometimes said to be oriented.

2.2 THE VIEWING TRANSFORMATION.

The coordinates of the VERT [] array are specified in the world coordinate system. In
order to create 2D images that allow the user to see a surface from arbitrary points of
view, IC creates a view coordinate system and a transformation from world to view
coordinates that projects surface triangles onto a viewplane. The user controls the view
through settings of the azimuth 0, latitude <f> and center point r. Azimuth and latitude
determine the orientation of the viewplane normal n and up unit vector v in the following
way:

Wx = -COS0COS0

ny = -cos^sintf

nz = - sin 0

.■Ä Z.(O,O,D z-(z-n)n

Note that v is just the projection of the z-axis perpendicular to n. This construction is
degenerate for v when the user wants to look straight down or straight up (n parallel to z),
and for that case it is replaced by

nx=0

ny=0

M2 = -sign0

vx = -sign^cosö
vy = -sign^sintf

v, = 0

where sign^ e {1, -1}. For all cases, the rightward unit vector u must be perpendicular to
both n and v, a condition satisfied by the vector cross product

u = nxv

The center point r becomes the origin of the left-handed view coordinate system with axis
directions u, v and n. Note that r and n define the viewplane and v determines the
orientation of the rectangular window (see Figure 3-1). By defining an intermediate
quantity r' as

r' = (-ru, -rv, -rn)

the world to view transformation T^ may be captured by the 4 x 4 matrix

T = *wv

\ Vx "x -nje
uy vy "y

-nyle
Uz V: nz -nje
r'

X
r'
y K \-rJe

The scalar e is a displacement along n, in view coordinates, from the viewplane to a point
called the eye. This distance, which in IC is fixed, controls the amount of perspective
foreshortening in the image.

Readers might recognize the viewplane normal n, origin r (also called the view reference
point or center of projection) and other parts of this development as variations on the
synthetic camera model, informative descriptions of which are available from almost any
good 3D graphics text (see, for example, the textbook by Hill (1990)).

A further scale and translation map from view coordinates to screen pixels. This
transformation takes into account the user-defined zoom scale factor s^^ and the aspect,
or relative width and height ax,ay, of the display's pixels. The view is fit into a
rectangular display window so that a distance of lls^^ just fits the smaller of the two
window dimensions dx,dy.

s.. =<
A> ** »~* «■ ^** ■* v^^ V

[a /a is d . d a > d a \ y I x /"zoom**y' "x x — y :

*v =
_ J(-axK)*zoom^x» dxax <dyay

Szoomdy, da >da

T
0 sv

0 0
dx/2 dy/2

0
0

1
0

0

0

0
1

In other words, view coordinates are scaled horizontally by su and vertically by sv, and the
pixel origin is moved to the center of the window. Note that sv is always negative, which
has the effect of performing a vertical flip. By default in Microsoft Windows, the pixel at
(0, 0) is in the upper left corner of the client area of the window and the vertical
coordinate increases downward.

The complete viewing transformation T is then

T = x T X *WV xscteen

Figure 2-1. Elements of the viewing system.
The 3D surface geometry in xyz is not shown.

Wire Facet Smooth

Figure 2-2. A tessellated sphere rendered by
three different methods. The triangle at right
illustrates intensity interpolation.

A point p in VERT [], extended to include a homogeneous coordinate w = 1,

P = (A./VA.l)

is transformed by

q=pT

p'= (?*/?*» qyi<iw, qzi<iw)

2.3 RENDERING AND SCAN CONVERSION.

One of the advantages of the surface finding method described in 2.1 is that it produces a
surface defined entirely by a list of triangles. Planar convex polygons are among the
simplest and best understood objects in 3D graphics, and a large number of methods is
available for drawing them on the display. IC implements three of them, and for the user
the choice between them is a tradeoff involving image quality, information content and
rendering speed (see Figure 3-2).

The simplest surface representation is a wireframe drawing, produced by drawing the
edges of each surface triangle. Wireframes are fast. They make the polygonal geometry
of the surface visually explicit, and since they're transparent, they can show all sides of the
surface simultaneously. They cannot, however, provide many of the important 3D visual
cues that users take from a surface drawn more realistically as a shaded solid object. For
this the user may choose between facet rendering, which remains close to the polyhedral
surface definition, and more computationally expensive smooth rendering, which treats the
polygon mesh as an approximation to a continuous surface.

2.3.1 Hidden Surface Removal.

Both facet and smooth rendering require the removal of hidden parts of the surface—
those parts of the surface that are behind other parts and therefore obscured from view.
Because of the nature of the surfaces produced by the program, IC gets good results using
very straightforward techniques called back face culling and depth-order traversal.

Back faces are triangles facing away from the camera, meaning roughly that their normals
form an angle with the direction of view of more than 90°. In most cases, IC surfaces are
closed polyhedra for which back faces always represent the enclosed and therefore non-
visible interior side of the surface. (The exception is a surface truncated at the edge of the
data.) Back faces are removed from consideration early in the rendering process, which
on average cuts in half the number of triangles to be rendered.

Depth-order traversal sorts triangles from far to near and then renders them in that order.
When possible ambiguities after sorting are ignored, this approach is also known as the
painter's algorithm, a reference to the way artists sometimes paint closer objects on top of

more distant ones. In the general case, where polygons may have overlapping extents or
even interpenetrate, the painter's algorithm will produce incorrect results. The triangles in
an IC surface, however, are built on a regular grid, which restricts their interactions to
cases for which the painter's algorithm nearly always succeeds.

2.3.2 Lighting and Shading

Lighting and shading are distinct aspects of rendering, but in IC they are both modeled
simply enough that they may be treated together. IC creates surface images in varying
shades of gray by putting a point light source at the position of the camera and then
calculating the intensity of the difliise reflected light at different points on the surface.
IC's point light source is just a vector giving the direction opposite to the direction of
illumination. The diffuse reflected intensity at a point on the surface is then the cosine of
the angle of incidence, which is found as the dot product of the light vector and the
surface normal at that point.

Facet and smooth rendering differ in the choice of surface normals and in the number of
intensity calculations. Facet rendering uses the face normals developed in 2.1.4 to assign a
shade of gray to an entire triangle. This constant shading accounts for the surface's
faceted appearance. Smooth rendering uses a technique called Gouraud interpolated
shading (Gouraud 1971).

IC develops surface normals at the vertices of triangles by summing the components of the
face normals for faces sharing each vertex, and for each triangle an intensity is calculated
for its three vertices using the dot product relation. Gouraud shading finds intensities for
points on triangle edges by linear interpolation between the endpoint vertices. An intensity
for any interior point of the triangle may then be found by interpolation between the two
edges that cross that point's scanline, the horizontal row of pixels in which the
transformed point lies.

For facet rendering (and wireframes), the job of setting individual pixel values on the
display for each triangle, called scan conversion, is performed by low-level graphics
routines in the Windows video driver for the display hardware. The IC DLL passes the
pixel coordinates of the triangle vertices to the Windows function Polygon ()
(Polyline () for wireframes). Gouraud shading, however, is an integral part of scan
converting a triangle, and IC must therefore perform its own scan conversion. The scan
conversion routines in IC closely follow code by Heckbert (1990).

10

SECTION 3
RESULTS

3.1 AN INTERACTIVE PC-BASED PROGRAM.

Over the contract period, ICCanvas has evolved from a DOS program with limited
viewing and display capabilities, modest mouse support, a text-based interface and
substantial memory constraints into a full-fledged 3D visualization tool for Windows with
online help, complete viewing controls, Gouraud interpolated shading, and the ability to
export both images and 3D geometry. The paragraphs that follow briefly describe the
operation of the program in its current form from the user's point of view. See Figure 3-1
for an idea of what the user actually sees.

The ICCanvas program package consists of the program file iccanvas.exe, the dynamic-
link library iclib.dll, which contains functions implementing the algorithms of Section 2,
and the online help file ichelp.hlp. The package is installed by copying these three files to
the user's hard drive and performing the usual Windows procedure for making the
program's icon visible and selectable from the Windows Program Manager.

To begin an ICCanvas session, the user picks the Open menu option in the File menu to
open an IC format data file containing a 3D array of densities. The program examines this
file and displays an approximate distribution of the densities it contains using the Level
dialog. By default the level is set to the median value in this distribution, but it may be
changed to any value.

Once the data file is chosen and the level set, ICCanvas reads the data and constructs a
surface. The progress of the build is displayed, and during most ofthat time (typically 5 to
10 seconds) the user is given the option of cancelling the build. Assuming it is allowed to
finish, the program then draws the surface on the display.

To view the surface from different angles, the user can click and hold the left mouse
button anywhere in the display, and by moving the mouse change the orientation of the
view. A picture of a square representing the ground plane with a vertical axis attached at
one corner (the axis image) is drawn on top of the surface while the left mouse button is
held down. Moving the mouse changes the orientation of the axis image, and when the
left mouse button is released the surface is redrawn at the new viewing angle.

The user is given greater control over the view through a Camera dialog and Center menu
option, both available from the Settings menu. The Camera dialog allows the user to enter
the viewing angles, called azimuth and latitude, in degrees. The angle edit fields are linked
to a miniature axis image, and when either the text or the image is manipulated, the other
is updated to reflect the change. Another control, called Zoom, allows the user to magnify
or shrink the image in the display. The Camera dialog also offers six predefined views
(Top, Front, etc.) to simplify the specification of axis-aligned orientations.

11

1 open... 1
Save Image Windows BMP...
Save Surface EC Paintbrush PCX...

Macintosh PICT... Ejdt

Camera...
Level-
Center...

Window Size...
Bender Style -J Facet
Colors Smooth

Wire

Camera-
Level...
Center...

Window Size...
Bender Style ►

Setting Started
About IC

Help on Help

=*■ WlBl ■
C:\BU\TCW 0150.RLE

ivr KINB condensation (TASS)
at Oh 2a> 30.00»

fnnaoE iMMjaf
3 619s-014 90*
2.G54S-013 80Z
Z207a-O12 70*
1.7S2e-011 GOX
1.113o-010 SOX
8.095.-010 40*
5.G81e-009 30Z
2.029S-008 20*
1.63Sa-O07 10*

iisaa

l^fi*¥^

Window Size

Width IBBEMI D Sqw»

Figure 3-1. Elements of the ICCanvas user interface.

12

The Center menu option is used to pick a new center point for the display. The mouse
cursor is changed to a crosshair, and a small window is opened to report the position of
the cursor in 3D object coordinates as it moves. While centering, the mouse cursor is
actually moving in 3D along the plane of the display, and this can be useful, within limits,
for locating specific features on a surface.

To build a surface from the same data but with a different level, the user can call up the
Level dialog from the Settings menu. The table of levels displayed in the Level dialog tries
to give some indication of the distribution of densities in the data. Each level is paired
with a percentage that tells how many of the non-zero data points will be enclosed by a
surface at that level. In this respect, ICCanvas assumes that the data represents a mass of
some arbitrary shape sitting in a rectangular void. The statistics in the list attempt to be
relevant to the mass and not to the void.

The surface can be drawn, or rendered, in one of three ways controlled by the Render
Style menu options in the Settings menu. By default, surfaces are rendered in the Facet
style, which uses constant shading to draw each surface triangle. The results are fast and
solid-looking but somewhat rough-hewn. Smooth rendering uses Gouraud interpolated
shading, which looks better but takes longer. The very fast Wire option completely
reveals the triangle mesh.

ICCanvas also allows the user to transfer images and surface geometry to files or to other
programs through the Save Image, Save Surface, and Copy Image menu options. Images
can be saved to disk as Windows BMPs, PC Paintbrush PCX files or Macintosh PICTs.
The display can also be copied to the Windows clipboard, to be retrieved by another
program currently running. The Save Surface options write the 3D geometry of a surface
in either AutoCAD DXF or Wavefront OBJ format. Because of its complexity, the Print
option isn't available in ICCanvas, but the ability to export both images and geometry
gives the user the choice of any print-capable off-the-shelf software for producing
ICCanvas hard copy.

For better support of image export, the user can control the colors of the background and
the floor as well as the precise dimensions of the display. The Window Size dialog reports
the size of the display (strictly speaking, the size of the windows's client area) in either
pixels (picture dots) or inches.

3.2 DATA COMPRESSION AND THE IC FILE FORMAT.

On larger computer systems, storage has historically been cheap and programming effort
expensive. This economy, combined with the widespread use of FORTRAN in the
simulation community, has led to the storage of 3D hydrocode results in collosal text files
measured in gigabytes. In order for IC to be practical as a PC-based application, it was
recognized very early that a faster and much smaller file format for density data was
needed.

13

3.2.1 Text vs. Binary

The performance penalty in reading a large text file arises partly from the file's size, but it
is mostly a result of the representation of numbers as strings of characters. When reading
numbers as text, a program must feel its way one character at a time, first to parse the
character stream into individual numbers by looking for delimiters (commas and spaces,
for example), and then to convert the digit string (really a polynomial in the number base,
10) into a base 2 bit string understood by the machine. Binary files that store numbers in
machine-readable form eliminate the need for both parsing and conversion; the increase in
reading speed over text files is often two orders of magnitude. Binary files are usually
smaller, too.

To better appreciate the impact this has on program performance, as well as the influence
of user expectations, consider that each frame—1/30 second—of broadcast television, if
stored as discrete samples of the NTSC waveform, would require well over a megabyte of
text and take on the order of tens of seconds for a computer to read from a hard disk. No
one would watch a TV system with a refresh rate of 0.05 Hz, and the inertia of large text
files similarly mitigates against the usefulness of 3D density arrays.

Since the output of 3D TASS and DICE-MAZ, for example, isn't meant to be read
directly by humans, the primary benefit of text output for these codes is that it is easily
transported between machines that may have different binary number representations.
This is especially true for files produced on supercomputers, whose idiosyncratic internal
number formats are shared by very few machines. With a little effort, however, it is
almost always possible to write binary files on one platform that can be read on another,
and with its enormous installed base, the PC platform is a reasonable target for such effort.
Figure 3-2 provides an example of how this is done.

3.2.2 Run-Length Encoding.

Run-length encoding (RLE) eliminates redundancy in a data array by replacing runs of
equal values with a count followed by a single instance of the value. In what is sometimes
called adaptive RLE, the count is also a code that distinguishes between repeat runs and
literal runs, which eliminates the need for a count of 1 before each data value not part of a
repeat run. IC uses the following interpretation of its RLE codes (n):

n>0

n<0

a run of n + 1 data values follows

repeat the next value -n + 1 times

The sequence

12333444

is encoded as

14

/*

make_float()

Convert a float to an IEEE bit string.

INPUTS
x

CALLS
fabs()
frexp()

floating-point value

math.h, floating-point absolute value
math.h, split FP number into exponent and mantissa

RESULTS
The value of x is written to a byte array as an arrangement of bits
representing an IEEE 4-byte float in Intel byte order, and the byte
array is returned.

+ +
| 0 1 2 3 Bit pattern for the |
| 76543210 76543210 76543210 76543210 IEEE 4-byte float in |
| mmimimmmim mmmmmmmm emmmmmmm seeeeeee Intel byte order. |
+ +
I sign exp mant value I
I |
|00 0 0.0 I
I 0 127 0 1.0 IEEE representations |
| any 255 0 INF of some values of |
I any 255 not 0 NAN interest. |
+ +

*/

static char *make_float(float x)
{

static char c[4];
int e, s;
unsigned long m;
double d;

d = fabs(frexp((double) x, &e));
m = (unsigned long)(d * (1L « 24))
s = (x < 0.0);
e += 126;

& 0x007FFFFF;

c[0] = m & OxFF;
c[1] = (m » 8) & OxFF;
c[2] = ((m » 16) & 0x7F) | ((e & 1) « 7) ;
c[3]=((e»l)i 0x7F) | (s « 7);
return c;

Figure 3-2. Example source code for the creation of an
Intel/IEEE 4-byte float on any machine.

15

112-23-24.

Evidently, the amount of compression varies with the number of values that are part of
repeat runs. In the average case for typical IC data, there are long runs of O's that account
for most of the extra space squeezed out of a file by RLE. In the worst case, which
contains no repeat runs longer than 2, an optimal implementation of RLE will add no more
than 1 to the length of a data array. Optimal RLE doesn't try to encode repeat runs of
length 2. Consider the sequence

12 3 3 4.

Treating the 3's as a repeat run yields

112-1304

whereas encoding the whole sequence as a literal run leads to

4 12 3 3 4.

3.2.3 A 16-Bit Real Number Format.

In IC, floating-point density values x are scaled into 2-byte integers by the C-language
expression

x <= le-16 ? 0 : 2048 * loglO(x) + 32768

In terms of precision and range, this is equivalent to using 5-place common logarithms for
values between 10~16 and 1016. There are a number of advantages in using this format for
densities in memory as well as in data files, some of which are listed here.

1. 2-byte integers are smaller than the 4-byte and 8-byte binary formats available for
floating point numbers. This has a significant effect on file size, but it more
importantly affects the size of density data in memory. In general, segmented memory
addressing under MS-DOS places an upper limit of 64K on the amount of memory
that can be addressed by a single pointer. Within this limit, a 2D array of density
values can be as large as 181 x 181 with the 2-byte format, while an array of 4-byte
floats can be no larger than 128 x 128.

2. Integer arithmetic is faster than floating-point. (The only actual arithmetic operations
performed on density values are comparison, for which the format is numerically
irrelevant, and interpolation, for which the use of log scaling has the beneficial side
effect of creating smoother surfaces on data with large gradients.)

3. Because of the way surface points are inferred from the density data, 16 bits is just the
right amount of precision for this data (assuming, fairly safely, that the data varies over
a significant fraction of the number format's range).

16

4. RLE is more difficult to implement efficiently when the codes and data values are of
different numeric types, especially in languages other than assembler and C.

5. Using the same format in memory and on disk eliminates the need to perform a
conversion when moving from one to the other.

3.2.4 Other Compression Methods.

Other compression schemes were considered. At least one PC-based application for
rendering landscapes from U.S. Geological Survey data stores arrays of 16-bit elevations
in runs of 8-bit deltas, or changes in elevation. This works because most elevation
gradients are sufficiently small that the change between sample points is usually less than
128 meters, the maximum change that can be captured in 8 bits. Delta encoding over time
is quite common in digital animation formats, since the change from one image frame to
the next is also usually small. At the relatively low data resolutions for which IC was
designed, however, the deltas between sample points (in both space and time) are too
large for delta encoding to yield much data compression in the general case.

Another technique from image file formats segregates the bits of an integer pixel code into
bitplanes and run-length encodes the bitplanes separately. Much of the compression
benefit from this approach derives from its ability to encode different pixel depths
(numbers of bits per pixel), which for IC would be impractical to implement. Note too
that at 16 bits per pixel (or data point), the encoder must find 48 consecutive bits that are
the same, aligned on 16-bit boundaries, before it can remove a single byte from the file
size. Even for the highest order bits in typical IC density data—even for long runs of
zeroes, in fact—this happens less frequently than one might suppose.

Other possibilities include various kinds of Huffman and Lempel-Ziv-Welch coding or a
discrete cosine transform such as that used in JPEG (Joint Photographic Experts Group)
image compression. The difficulty with these approaches, especially DCT, is their
complexity, which has an impact both on program performance during decoding and on
the ease with which programmers can implement their own IC file format code, and with
the exception of DCT, dramatic improvement in compression is unlikely.

3.2.5 The IC File Format.

The binary format of simple data types in an IC data file is based on the internal formats of
most popular C compilers running on Intel 80x86 PCs. The byte order places the most
significant byte at the highest linear address, an order sometimes called big-endian in
imitation of Swift (1727). As used here, the C types short and long are 2- and 4-byte 2's
complement integers. The C type float is a 4-byte IEEE floating-point number (IEEE
1985). The header structure described below is packed, meaning that no extra bytes are
allowed between structure members. The file format, however, aligns all data in the file
on 2-byte boundaries.

17

IC data files consist of 3D density data preceded by a 118-byte header giving the size of
the grid, the spacing of the data points along each axis, and other information about the
data.

typedef struct {
unsigned short
float
float

} AXIST;

typedef struct {
char
char
unsigned short
long
float
AXIST

} HEADER;

comment

reserved

percentile

creation date

simulation time

axis

size-
scale;
offset;

comment[40];
reserved;
percentile[9];
creation_date;
simulation_time;
axis[3];

A 40-character NULL-terminated string identifying and describing
the data. This string is displayed in the Level and Progress dialogs.

This space is currently ignored.

An array containing an approximate distribution for the densities.
At each decile interval from 90% to 10%, the array gives the level
at which that percentage of the non-zero data points will be
enclosed in an isosurface at that level. This is the information
displayed by the Level dialog. Levels are written in the same 16-bit
format described in 3.2.3 for the density data.

This is a creation date and time written as a 4-byte integer in the
manner of the ANSI function time (), which returns the number of
seconds since 00:00:00 January 1, 1970. It is meant to document
when the original data was created, but may also be used to record
when the IC format file was generated from the data.

If appropriate for the data, this stores the time in floating-point
seconds from the time origin. For simulations that produce data at
a sequence of time points, this field can be used to give the time
coordinate. The simulation time is displayed in the Level and
Progress dialogs.

An array of three structures giving the dimensions (size), distance
between data points (scale), and offsets from the origin. The scale
and offset values are in arbitrary units. Having a scale for each axis
allows ICCanvas to anisotropically scale its surfaces for cases
where the volumetric cells, or voxels, from which the data have
presumably been sampled are not cubes. The offsets allow

18

ICCanvas to preserve spatial information in cases where a
simulation has tracked a moving mass to keep it within the
bounding box of its space. Both scale and offset are taken into
account when a surface is saved with the Save Surface menu
options.

The header is followed by the actual density data. Densities are expressed in arbitrary
units, although by convention they have been in grams per cubic centimeter. Each density
value is packed into 16 bits as described in 3.2.3. Densities from each x-y plane, or slice,
of data are then run-length encoded as described in 3.2.2. Each compressed slice in the
file is preceded by a 2-byte integer giving the compressed size of the slice.

An IC format data file may be summarized as

HEADER (118 bytes)
si, size of first slice (2 bytes)
the first slice (si * 2 bytes)

begins with nl, the first RLE code (2 bytes)
first run
RLE code n2
second run...

s2 (2 bytes)
the second slice (s2 * 2 bytes)

begins with nl, the first RLE code (2 bytes)

and so on for header. axis [2]. size slices.

3.3 ADVANCED MICROCOMPUTER VISUALIZATION.

A part of our work on ICCanvas has been devoted to marrying the program's surface
creation capability to sophisticated commercial 3D rendering applications available for
small systems. The rendering software with which we have the most experience is called
Lightwave. (There is some irony in the fact that Lightwave author Allen Hastings worked
on cloud modeling for a defense contractor before turning to the development of
commercial software.) Lightwave is used to produce all of the spaceflight scenes for the
syndicated television show "Babylon 5" and many of the underwater scenes for the NBC
series "Seaquest DSV."

The evolution of a nuclear cloud over time is captured by ICCanvas as a series of models,
one for each time point in the density database, ideally, each object would be loaded into
the 3D rendering program at the appropriate frame on the basis of a sequence number that
formed part of the object's filename. This is a frequently used technique for sequences of
images. Consider a computer-animated scene in which a giant reptile threatens the
patrons of a drive-in theater. The movie playing on the screen in the background is
actually a planar image map. For each frame of the reptile animation, a single frame of the

19

movie is loaded and painted onto the screen object's surface. The association of each
movie frame with a frame of reptile animation is automatic and is determined in part by
sequence numbers imbedded in the filenames of the movie frames. Unfortunately, similar
sequences of objects are not so readily supported, possibly because objects are presumed
to be hand-made. There are other, more indirect approaches, however.

In Lightwave, the visibility of an object is controlled by a property called Dissolve.
Dissolve is an object property distinct from Transparency, which is a surface property. An
object all of whose surfaces are fully transparent may still participate in refraction and
shadow calculations and may exhibit specular reflection (glossy highlights), whereas a fully
dissolved object is considered absent from the scene. The loading of an object and the
setting of its Dissolve property can be controlled from a script file, and it is a simple
matter to write a program that automatically generates the appropriate script for any
sequence of objects.

In the script fragment that follows, a step function is created for the Dissolve property that
causes the object to be visible in a single frame of the animation.

LoadObject LW:Objects/tcw_0420.1w
ObjDissolve (envelope)

1
5
1.0
0 1 0.0 0.0 0.0
1.0
35 1 0.0 0.0 0.0
0.0
36 1 0.0 0.0 0.0
1.0
37 1 0.0 0.0 0.0
1.0
56 1 0.0 0.0 0.0

EndBehavior 1
ShadowOptions 7

Note that almost every time-dependent component of an animation, including Dissolve, is
defined sparsely, through keyframes, and interpolated (tweened) for other frames. This
fragment specifies 5 keyframes; the value of Dissolve is 0.0 at frame 36 and 1.0
everywhere else. A program is needed to generate these scripts because an animation
involving even a few level surfaces per time point can require the precise specification of
Dissolve envelopes for hundreds of objects.

As this example implies, the use of 3D rendering for visualization is different from the use
of high-end software designed specifically for data analysis. 3D rendering is an artist's
tool that has more in common with the making of a movie. In Figure 3-1, a single frame
from a cloud animation is accompanied by 5 wireframe views of the "stage" on which the
animation was created. A key light responsible for most of the illumination in the scene
shines down on the cloud from above and creates a shadow on the ground. A lower
intensity fill light brightens self-shadowed areas of the cloud. The semi-transparent green

20

or

^

W
Overhead y-axis Perspective

What the key light sees What the camera sees

Figure 3-3. One frame from a cloud growth animation.
The wire diagrams show the scene from various points of view.

21

rectangle slides slowly across the ground in the animation to depict the way TASS shifted
its origin to keep the cloud centered in its data space. The attenuation of the background
brightness was created by an effect called Distant Fog; its purpose here is to focus
attention on the objects in the foreground. The entire scene is anti-aliased to remove high
frequency image components that in video cause artifacts such as stairstep lines, rainbows
and jitter.

22

SECTION 4
REFERENCES

Lorenson, W., and H. Cline (1987). "Marching Cubes: A High Resolution 3D Surface
Construction Algorithm," Computer Graphics. 21(4), 163-169.

Wyvill, G., C. McPheeters, and B. Wyvill (1986). "Data Structure for Soft Objects," The
Visual Computer. 2(4), 227-234.

Bloomenthal, J. (1988). "Polygonalisation of Implicit Surfaces," Computer Aided Geo-
metric Design. 5,341-355.

Hall, M. (1990). "Defining Surfaces from Sampled Data," in A. Glassner, ed., Graphics
Gems. Academic Press, Boston. 552-557.

Durst, M. (1988). "Additional Reference to Marching Cubes," Computer Graphics.
22(2), 72-73.

Gouraud, H. (1971). "Continuous Shading of Curved Surfaces," IEEE Transactions on
Computers. C-20(6), 623-629.

Foley, J., A van Dam, S. Feiner, and J. Hughes (1990). Computer Graphics: Principles
and Practice. Addison-Wesley, Reading, MA 1035-1036.

Wilhelms, J., and A Van Gelder (1990). "Topological Considerations in Isosurface Gen-
eration," Computer Graphics. 21(4), 163-169.

Moore, D., and J. Warren (1991). "Mesh Displacement: An Improved Contouring
Method for Trivariate Data," Technical Report TR 91-166. Rice University,
Department of Computer Science.

Moore, D., and J. Warren (1992).. "Compact Isocontours from Sampled Data," in D.
Kirk, ed., Graphics Gems III. Academic Press, Boston. 23-28.

Hill, F. (1990). Computer Graphics. Macmillan, New York.

Heckbert, P. (1990). "Generic Convex Polygon Scan Conversion," in A. Glassner, ed.,
Graphics Gems. Academic Press, Boston. 84-86, 667-680.

IEEE (1985). "Standard for Binary Floating-Point Arithmetic," ANSI/IEEE 754-1985.

23

APPENDIX

THE CUBE CASES

Edge Number
Corner Number

Data Point < Level

Surface Triangle

Data Point > Level

Case Number
4 00000100

0 00000000 1 00000001 2 00000010 3 00000011

4 00000100 5 00000101 6 00000110 7 00000111

a 00001000 9 00001001 10 00001010 11 00001011

12 00001100

-^

13 00001101 14 00001110 15 00001111

Figure A-l. The cube cases.

A-l

16 00010000 17 00010001 18 00010010 19 00010011

20 00010100 21 00010101 22 00010110 23 00010111

24 00011000 25 00011001 26 00011010 27 00011011

28 00011100 29 00011101 30 00011110 31 0001 1111

32 00100000 33 00100001 34 0010 0010 35 00100011

36 00100100 37 00100101 I 38 00100110 39 0010 0111

Figure A-l. The cube cases (continued).

A-2

40 00101000

44 00101100

41 00101001

^*r
45 00101101

42 00101010

46 00101110

43 00101011

47 00101111

48 00110000 49 00110001 50 00110010 51 00110011

52 00110100 53 00110101 54 00110110 55 00110111

56 00111000 57 00111001 58 00111010 59 00111011

60 00111100 61 00111101 62 00111110 63 00111111

Figure A-l. The cube cases (continued).

A-3

64 01000000 65 01000001 01000010 67 0100 0011

68 01000100 69 01000101 70 01000110 71 01000111

72 01001000 73 01001001 74 01001010 75 01001011

76 01001100 77 01001101 78 01001110 79 01001111

80 01010000 81 01010001 82 01010010 83 01010011

84 01010100 85 01010101 86 01010110 87 0101 0111

Figure A-l. The cube cases (continued).

A-4

88 01011000 89 01011001 90 01011010 91 01011011

92 01011100 93 01011101 94 01011110 95 01011111

96 01100000 97 01100001 98 01100010 99 01100011

100 01100100 101 01100101 102 01100110 103 01100111

104 01101000 105 01101001 106 01101010 107 01101011

108 01101100 109 01101101 110 01101110 111 01101111

Figure A-l. The cube cases (continued).

A-5

112 01110000 113 01110001 114 01110010 115 01110011

116 01110100

120 01111000

117 01110101

121 01111001

118 01110110

122 01111010

119 01110111

123 01111011

124 01111100 125 01111101 126 01111110 127 01111111

128 10000000 129 10000001 130 10000010 131 10000011

132 10000100 133 10000101 134 10000110 135 10000111

Figure A-l. The cube cases (continued).

A-6

136 10001000 137 10001001 138 10001010 139 10001011

140 10001100 141 10001101 142 10001110 143 10001111

144 10010000 145 10010001 146 10010010 147 10010011

148 10010100 149 10010101 150 10010110 151 10010111

152 10011000 153 10011001 154 10011010 155 10011011

156 10011100 157 10011101 158 10011110 159 10011111

Figure A-l. The cube cases (continued).

A-7

160 10100000

164 10100100

168 10101000

172 10101100

161 10100001

165 10100101

169 10101001

173 10101101

162 10100010

166 10100110

170 10101010

174 10101110

163 10100011

167 10100111

171 10101011

175 10101111

176 10110000 177 10110001 178 10110010 179 10110011

180 10110100 181 10110101 182 10110110 183 10110111

Figure A-l. The cube cases (continued).

A-8

184 10111000 185 10111001 186 10111010 187 10111011

188 10111100 189 10111101 190 10111110 191 10111111

192 11000000 193 11000001 194 11000010 195 11000011

196 11000100 197 11000101 198 11000110 199 11000111

200 11001000 201 11001001 202 11001010 203 11001011

204 11001100 205 11001101 206 11001110 207 11001111

Figure A-l. The cube cases (continued).

A-9

208 11010000 209 11010001 210 11010010 211 11010011

212 11010100 213 11010101 214 11010110 215 1101 0111

216 11011000 217 11011001 218 1101 1010 219 11011011

220 11011100 221 11011101 222 11011110 223 11011111

224 11100000 225 11100001 226 11100010 227 11100011

228 11100100 229 11100101 I 230 11100110 231 11100111

Figure A-l. The cube cases (continued).

A-10

232 11101000 233 11101001 234 11101010 235 11101011

236 11101100 237 11101101 238 11101110 11101111

240 11110000 241 11110001 242 11110010 243 11110011

244 11110100 245 11110101 246 11110110 247 11110111

248 11111000 249 11111001 250 11111010 251 11111011

252 11111100 253 11111101 254 11111110 255 11111111

Figure A-l. The cube cases (continued).

A-ll

DISTRIBUTION LIST

DNA-TR-94-64

DEPARTMENT OF DEFENSE

DEFENSE INTELLIGENCE AGENCY
ATTN: DGI4
ATTN: PAG1

DEFENSE NUCLEAR AGENCY
2CYATTN: IMTS
3 CY ATTN: OPNA MAJ SANDERS

ATTN: RAEM
ATTN: SPWE K PETERSEN
ATTN: SPWE LTC JIM HODGE
ATTN: SPWE LTC MARK BYERS

DEFENSE TECHNICAL INFORMATION CENTER
2CYATTN: DTIC/OC

FIELD COMMAND DEFENSE NUCLEAR AGENCY
2CYATTN: FCPR

DEPARTMENT OF THE ARMY

U S ARMY ATMOSPHERIC SCIENCES LAB
ATTN: SLCAS-AR-M

U S ARMY NUCLEAR & CHEMICAL AGENCY
ATTN: MONA-NU DR D BASH

U S ARMY TRAINING AND DOCTRINE COMD
ATTN: ATCD-N

US ARMY CHEMICAL SCHOOL
ATTN: ATZN-CM-CC-003

DEPARTMENT OF THE NAVY

NAVAL POSTGRADUATE SCHOOL
ATTN: CODE 52 LIBRARY

NAVAL SURFACE WARFARE CENTER
ATTN: CODE H-21

DEPARTMENT OF THE AIR FORCE

AIR FORCE INSTITUTE OF TECHNOLOGY/EN
ATTN: ENA

AIR UNIVERSITY LIBRARY
ATTN: AUL-LSE

ASSISTANT CHIEF OF STAFF
ATTN: AFSAA/SAK

DEPARTMENT OF ENERGY

LAWRENCE LIVERMORE NATIONAL LAB
ATTN: TECH LIBRARY

LOS ALAMOS NATIONAL LABORATORY
ATTN: TECH LIBRARY

SANDIA NATIONAL LABORATORIES
ATTN: TECH LIB 3141

DEPARTMENT OF DEFENSE CONTRACTORS

HORIZONS TECHNOLOGY, INC
ATTN: BLEE

JAYCOR
ATTN: CYRUS P KNOWLES

KAMAN SCIENCES CORP
ATTN: DMOFFETT
ATTN: DASIAC

KAMAN SCIENCES CORPORATION
ATTN: DASIAC

S-CUBED
ATTN: J NORTHROP

SCIENCE APPLICATIONS INTL CORP
ATTN: ESWICK

SCIENCE APPLICATIONS INTL CORP
ATTN: J MCGAHAN

VIRTUAL IMAGE LABS INC
2CYATTN: E WRIGHT

Dist-1

